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Abstract

Although research has been going on in the formal analysis of crypto-
graphic protocols for a number of years, they are only slowly being inte-
grated into the protocol design process. In this paper we describe how we
furthered the integration of analysis and design by working closely with
the Multicast Security Working Group in the Internet Engineering Task
Force on the analysis of a proposed Internet Standard, the Group Domain
Of Interpretation (GDOI) Protocol. We describe the challenges that had
to be met before the analysis could be successfully completed, and some
of the challenges that still remain. Perhaps not surprisingly, some of the
most challenging work was in understanding the security requirements for
group protocols in general. We give a detailed specification of the re-
quirements for GDOI, describe our formal analysis of the protocol with
respect to these requirements, and show how our analysis impacted the
development of GDOI.
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1 Introduction

Although research has been going on in the formal analysis of cryptographic
protocols for a number of years, it is only slowly being integrated into the pro-
tocol design process. In this paper we describe how we furthered the integration
of analysis and design by working closely with the Multicast Security Working
Group in the Internet Engineering Task Force on the analysis of a proposed In-
ternet Standard, the Group Domain Of Interpretation (GDOI) Protocol, using
the NRL Protocol Analyzer (NPA) and the associated NPATRL requirements
language. We found the formal analysis to be extremely beneficial when done in
close cooperation with the protocol designers, and we outline our findings and
the impact on the protocol in this paper. We also outline the various challenges
that had to be met before we could perform a successful analysis.

Perhaps not surprisingly, the most important challenge turned out to be
getting the requirements right. Requirements are in general well understood
for key distribution protocols involving two or three parties, and a number of
formalizations of such requirements exist. But they are not as well understood
for group key distribution protocols, where keys may possibly be distributed
among an arbitrarily large group of principals that may join or leave the group
at any time. Concepts such as secrecy and freshness that can be tied to a single
session in a two or three party protocol become more elusive when the number
of principals which are permitted to know a secret is unspecified, and when a
principal’s permission to know a secret can change over time as it joins or leaves
the group.

We attempted to fill this gap by developing a set of formal requirements for
the GDOI group key management protocol [1], a protocol which we have been
formally specifying and verifying as part of a joint effort with the IETF MSec
working group. To do this, we used the NPATRL requirements language [21], a
temporal language for cryptographic protocol requirements intended for use with
the NRL Protocol Analyzer [15, 16]. What we found as a result of this effort was
that requirements for group key distribution protocols were little understood,
and that as much or more work needed to be put into developing a set of formal
security requirements as into the formal specification of the protocol itself. For
GDOI, the requirements for authentication and freshness turned out to be rather
similar to those for pairwise protocols. This we believe is the result of the fact
that GDOI provides authentication only for the Group Controller/Key Server
(GCKS), which is responsible for distributing keys to the group, rather than for
authentication among the group members themselves. However, we found the
secrecy requirements radically different from those for pairwise protocols. This
has to do with the fact that GDOI was developed for the distribution of keys to
dynamic groups, so the set of principals who have permission to know the keys is
constantly changing. This forced us to address the issue of how much permission
a new or departed member should have to keys that were not current when he
was a member of the group. The added complexity of the secrecy requirements
resulting from the needs of secure group communication has also induced us to
develop a deductive system for NPATRL so that it can be used to derive simple
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requirements from complex ones. We describe the logic and show how it can be
applied in simplifying requirements.

The actual course we followed in the analysis of GDOI was first to write
a formal specification of the protocol in the NPA specification language, then
to write a formal specification of its requirements in NPATRL, and finally use
NPA to verify that the protocol met its requirements. This deviates somewhat
from the recommended practice, which is to deal with the requirements first,
but was motivated by the fact that we already had a draft of the protocol to
work with when we started. We found various problems at each stage of the
analysis. When we did, we would bring the matter up with the protocol design-
ers; this would lead to a discussion of various options to take, and would usually
result in a change to a protocol. The final decision was usually motivated by
a consideration (and sometimes a re-evaluation) of the protocol’s requirements,
showing again the importance of having a clear unambiguous way of stating
them.

The rest of this paper is organized as follows. In Section 2 we give an
overview of the GDOI protocol. In Section 3 we introduce the NRL Protocol
Analyzer and the NPATRL logic, showing how it can be considered as a subset
of Linear Temporal Logic (LTL), and we describe the normal form for NPA-
TRL requirements for the NRL Protocol Analyzer. In Section 4 we present the
NPATRL requirements for GDOI, and we also describe our system for building
secrecy requirements. In Section 5 we describe our specification and analysis of
the protocol, and the impact that this had on the protocol’s design. In Section 6
we conclude the paper and sum up the impact of our work and some of the open
problems that remain to be solved. In Appendix A we show how we were able to
use the logic to remove recursiveness from the secrecy requirements and reduce
them to normal form.

2 An Overview of GDOI

The GDOI (for Group Domain Of Interpretation) protocol [1] is intended to be
used with the Internet Key Exchange (IKE) protocol [9, 5] to allow a Group
Controller and Key Server (GCKS) to distribute keys to members of a group.
Although it does not specify any mechanisms such as key hierarchies [2] for effi-
ciently distributing keys to group members or for expelling or adding members,
it is designed to be compatible with the use of such techniques.

GDOI uses three categories of keys. Category 1 keys are the pairwise keys
shared between the GCKS and potential members. Category 2 keys are key-
encryption keys that are used to protect the Category 3, or traffic encryption
keys.

2.1 Group-Key Push Subprotocol

For GDOI, the Category 1 (pairwise) keys are distributed via IKE Phase 1,
which is described in [9, 5]. Key-encryption keys and traffic-encryption keys are
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created by the GCKS. The GCKS distributes these keys to the group as a whole
by a groupkey-push message encrypted with the current key-encryption key. The
GCKS maintains a sequence number SEQ that is incremented every time a new
groupkey-push message is sent. The current value of the sequence number is
included in the groupkey-push message. This allows group members to verify
that a message is not a replay of one that they have already received. The
groupkey-push message is also digitally signed by the GCKS using its private
key so that receivers can verify that it was sent by the GCKS and not by another
group member.

Since GDOI is based on IKE, it makes use of the ISAKMP [13] header
format. Some details about this header turned out to be relevant to our analysis,
so we include them here. First, each header begins with a random or pseudo-
random number. In IKE Phase 2 this is a cookie pair contributed to by the
initiator and the responder. Since this is not practical for the groupkey push
message, it instead begins with a random or pseudo-random number generated
by the GCKS. Secondly, each header includes a message ID, which is is a random
number generated by the initiator. If a protocol contains more than one message,
that message ID remains the same throughout the entire exchange.

The groupkey-push message appears as follows in [1]:

Member GCKS or Delegate

←− HDR*, SEQ, SA, KD [,CERT], SIG

The term HDR* indicates that everything is encrypted after the header, in this
case using the current key encryption key. SEQ is the sequence number, SA
the security association for this key payload, which gives such information as
algorithms used, key lifetimes, etc., and KD the new keying material. SIG is a
digital signature taken over the message and the header, and CERT is an optional
certificate for the signature key.

2.2 Group-Key Pull Subprotocol

When a principal wants to join a group, it takes part in a four-message groupkey-
pull exchange with the GCKS. All messages are encrypted and authenticated
with the pairwise key shared between the two principals. In the first message,
the principal sends a request to join the group, including the group identifier
and a nonce Ni to help in verifying freshness.

The GCKS responds with its own nonce Nr and with the group security
association SA, which describes the mechanisms (e.g. encryption algorithms)
and policies used by the group. It holds off on sending the keying material itself
until it can verify that the request is recent. This helps prevent denial of service
attacks, and if POPs (see below) are used, allows the GCKS to wait until it
knows the member has the appropriate credentials. The group member responds
with a hash taken over the two nonces, as well as some optional information,
described below. The GCKS sends the keying material and the current value of
the sequence number in the last message.
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There are also some optional fields in the last two messages. If it is required
by the group policy, the member can send its own part of a Diffie-Hellman
key exchange in the third message (KE I), and the GCKS can respond with its
part of the exchange in the fourth message (KE R). The resulting Diffie-Hellman
key is used to encrypt the group keying material by use of exclusive-or. The
purpose of this is to provide perfect forward secrecy: even if a pairwise key is
compromised, the intruder can learn only keys distributed after the compromise,
not those distributed before.

Another option allows the two principals to verify that each is authorized
to act in their respective roles. This is the proof-of-possession (POP) option,
where each party includes a public key certificate signed by a relevant authority,
and proves his or her possession of the key by using it to sign the two nonces
that were exchanged earlier in the protocol.

The four messages sent in the groupkey-pull exchange appear as follows
in [1]:

Initiator (Member) Responder (GCKS)

HDR*, HASH(1), Ni, ID −→
←− HDR*, HASH(2), Nr, SA

HDR*, HASH(3) [, KE I] −→
[,CERT] [,POP I]

←− HDR*, HASH(4) [,KE R], SEQ,

KD [,CERT] [,POP R]

where Ni and Nr are the two nonces, SA is the security association, KE I and KE R
are the optional Diffie-Hellman halves, CERT, POP I, POP R are the certificates
and signatures used in the optional proof-of-possession exchange, and SEQ and
KD are the sequence number and keying material (exclusive-ored with the Diffie-
Hellman key if that is used), respectively. The way in which POP I, and POP R
were computed varied as the protocol evolved, but in the version we verified,
they were created by computing a digital signature over a hash taken over the
initiator’s nonce followed by the responder’s nonce. The notation HDR* means,
as before, that all information after the header is encrypted, this time with the
a key derived from Category 1 key already shared between the GCKS and the
member. The hashes in the exchange are computed over message ID from the
header plus the payloads sent in the body of the message (minus any formatting
information), with the exception of certificates, in the order that they appear.
The key used in computing the hashes is also derived from the Category 1 key,
but is different from the encryption key. More detail may be found in [1].

2.3 About Keys

Elimination of a member from a group is accomplished via the groupkey push
message, which can be used to transmit the a new key to the group in a way such
that the expelled member does not receive it. How exactly GDOI accomplishes
this is beyond the scope of the GDOI specification itself. However, this can be
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done using something called a key hierarchy in the key download field. Basically,
a key hierarchy is a tree, the root of which is the actual key used for encryption.
Nodes of the tree encrypt and authenticate the nodes above it. When a principal
is admitted to the group, it is assigned a leaf of the tree. When it leaves the
group, only the (limited) portion of the tree it needs to compute the group
key ought to be updated. This allows access control for both entering and
leaving members to be enforced in an efficient way, as well as providing extra
security beyond that provided by the key-encryption key used to encrypt the
push message, since a new key will be protected by the keys below it in the
hierarchy. See [2] for a discussion and overview of key hierarchies.

2.4 A Preview of the GDOI Requirements and Analysis

GDOI must satisfy requirements for authentication, freshness, and secrecy.

Authentication The authentication requirements are similar to those for
pairwise protocols. Indeed, the groupkey pull protocol is a pairwise proto-
col. The key distributed is shared with other group members, but this does
not affect the authentication requirements. Furthermore, for the groupkey push
message, the only authentication requirement is that its single message must
have been generated by the GCKS for that group. In spite of this, we found the
most interesting violations when we attempted to verify authentication proper-
ties. These had to do with possible type confusion attacks between POP and
groupkey push messages, and were realistic enough to motivate the designers
to change the specification of both the POP signatures and the groupkey push
message to avoid it. These attacks are described in Section 5.2.3.

Freshness Freshness requirements turned out to be a little more subtle, mainly
because of the slightly different requirements for the groupkey pull protocol
and groupkey push message. Since the latter could not make use of challenge-
response, its freshness requirements were of necessity slightly weaker. We iden-
tified two different types of freshness: recency freshness, the requirement that
a principal accept the most recently current key, and sequential freshness, the
requirement that a principal should not accept a key that is older than any
key it has already accepted. These correspond closely to notions of freshness
we developed earlier in [21]. The groupkey pull protocol should satisfy both
kinds of freshness, while the groupkey push message can only satisfy sequential
freshness. We found several problems here. In one case, the incorrect place-
ment of the sequence number meant that freshness could not be guaranteed for
traffic-encryption keys delivered under certain circumstances. This is detailed
in Section 5.2.1. In another case, we found that specification was written in
such a way that it was possible to construct compliant implementations of the
groupkey pull protocol that were in violation of sequential freshness. This is de-
tailed in Section 5.2.2. In both cases, the specification was modified to eliminate
these flaws.
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Secrecy The secrecy requirements were probably the most interesting, and the
most different from pairwise protocol requirements. GDOI does not support a
single set of secrecy requirements. Rather, it can be configured to implement
different combinations of requirements. These include perfect forward secrecy (if
a pairwise key is compromised, then the intruder learns only the keys it is used
to distribute after the compromise) and forward and backwards access control (a
member should not have access to keys current after it leaves the group (forward
access control) or before it joins the group (backward access control)). Some of
these options, such as perfect forward secrecy, can be enforced by GDOI itself.
Others, such as forward and backwards access control, can only be enforced by
the use of the appropriate key hierarchy and are beyond the scope of GDOI, as
well as the current capabilities of NPA. Thus we only attempted to analyze the
simplest secrecy properties in our NPA analysis, but since a precise specification
of requirements is helpful whether or not it is accompanied by an analysis, we
provide a means for specifying secrecy requirements in Section 4.5. Since there
were so many ways requirements could be mixed and matched, we found it
helpful to specify them separately in terms of different sequences of events that
could cause the compromise of a key, and then describe the ways in which
they could be combined. We then needed ways of simplifying the resulting
requirements. This necessitated the development of a deductive system for
NPATRL, which is described in Section 3.

3 The NPATRL Logic

In this section, we define the concepts, languages and tools used in the rest of
the paper. More precisely, we give an informal account of the NRL Protocol
Analyzer, which was used to perform the actual analysis of GDOI, in Section 3.1.
We then introduce NPATRL in Section 3.2, relate it to mainstream temporal
logics in Section 3.3, and present an axiomatization for it in Section 3.4. We
conclude with a breif discussion of the fragment of NPATRL used in the NPA
in Section 3.5.

3.1 The NRL Protocol Analyzer

The NRL Protocol Analyzer, or NPA for short, is a computer-assisted verifica-
tion tool for security protocols which combines model checking and theorem-
proving techniques to establish authentication and secrecy properties. We present
merely a brief overview here. The interested reader is invited to consult [15, 16]
for further details.

A protocol is modeled as a number of communicating state machine tem-
plates, each associated with a different role. Their transitions correspond to the
actions that comprise the corresponding role. At run time, roles are executed by
honest principals who faithfully follow the protocol. Several instances of a role
involving the same principal can be executing at the same time, and they are
distinguished by means of a round number. Round numbers are implemented
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in the NRL Protocol Analyzer in the following way: each principal possesses a
local counter that is incremented every time that principal engages in a tran-
sition. When a principal starts to execute a protocol instance, that instance is
assigned a round number equal to value of the counter at the time it begins to
execute that instance. All further transitions involving that instance of a role
will have the same round number. This ensures that principal name and round
number will be enough to identify any instance of a role uniquely.

The intruder is modeled after the Dolev-Yao adversary [4]. Dishonest prin-
cipals share their keys and other confidential information with the adversary.
Thus a dishonest principal is assumed to be part of the adversary, since anything
a dishonest principal could do the adversary could do as well.

The messages in transit, the information held by each principal and the
intruder, the runs currently being executed, and the point that each of them has
reached constitute the global state for the NPA. A protocol action implements a
local transformation with global effects on the state. The initial state is implicit
in the protocol specification.

In order to verify a protocol, a specification is fed into the run-time sys-
tem of the NRL Protocol Analyzer together with the description of a family of
states that correspond to attack situations. The system applies protocol actions
backwards from these target states until it either reaches the initial state, or it
exhausts all possibilities for doing so. As it regresses back towards the initial
state, the NPA maintains a trace of the sequence of actions that, when exe-
cuted, lead to the target state. If the initial state is ever reached, the resulting
trace is a potential attack. If all possibilities are exhausted, there is no attack
of the kind sought. Although the search space is in general infinite, the NPA
incorporates techniques based on theorem proving that have, in most cases, the
effect of soundly restricting the search to a finite abstraction.

Traces in NPA are sequences of events. Each event is associated with an NPA
transition. An event consists of five components: the name T of the transition
the event is associated with, the principal P executing the transition, a list Q
of other parties involved in the transition (e.g. the putative sender of a message
P is receiving or the intended receivers of a message P is sending), the set L of
relevant words chosen by the specification writer, and the local round number
N associated with the transition.

NPA goal states can be expressed by referring to terms known by the in-
truder, values of local state variables, and conditions on traces of events. Ex-
amples of goal states would be one in which the same key has been accepted
twice by a principal (two events occurring) or a state in which a responder B
accepts a key as good for communicating by an initiator A, but in which A
never initiated the protocol (one event having occurred and another event not
having occurred previously), a state in which the intruder knows a term K and
a principal A has accepted K as a key (the intruder knowing a term together
with an event having occurred).

The NPA determines whether a protocol rule could be used to produce a state
by means of a process known as narrowing. Terms (that is expressions made out
of variables, constants, and function symbols) used in protocol specifications are
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assumed to obey a set of explicitly defined rewrite rules, that is, equations such
that the right-hand side of the equation is “simpler” than the left-hand side
according to some well-defined measure. An example of a rewrite rule would
be one saying that the result of encrypting a term and then decrypting it with
the same key reduces to the original term. Terms used in state descriptions are
assumed to be irreducible (no further rewrite rules apply), while terms used as
output of rules may possibly not be reducible. The narrowing algorithm is used
to find all substitutions to the variables involved such that the terms in the rule
output become reducible to the terms in the state description. The narrowing
algorithm is very dependent upon the fact that the entities used are rewrite
rules, as well as the fact that they obey certain other well-defined properties.

The NPA makes no assumptions about limits on the number of protocol exe-
cutions, the number of principals performing the different executions, the num-
ber of interleaved executions, or the number of times cryptographic functions
are applied. This results in a search space that is originally infinite. However,
the NPA provides means for specifying and proving inductive lemmas about the
unreachability of infinite classes of states. This allows the user to narrow down
the search space so that in many cases an exhaustive search is possible. These
inductive lemmas are formulated in terms of formal languages. The user gives
the NPA a seed term, and the NPA uses the seed term to construct a language
and prove that, if the intruder learns a term in the language, then it must have
already known a term in that language, thus inductively proving that the in-
truder can never learn a term in the language. For protocols involving public and
shared-key encryption, we have developed a standard set of seed terms: master
keys, encrypted data where the data is not known by the intruder, decrypted
data where the term decrypted is not known by the intruder, concatenation of
two terms where one of the terms is not yet known by the intruder, and signed
data.

3.2 The NPATRL Syntax

The NRL Protocol Analyzer has successfully analyzed a number of protocols,
sometimes uncovering previously unknown flaws [15, 16]. But, secrecy and au-
thentication goals are awkwardly expressed, as states that should not be reach-
able from the initial state. This unintuitive and occasionally error prone way of
writing requirements would have made it very difficult to use the NPA for large
protocols.

The NRL Protocol Analyzer Temporal Requirements Language, better known
as NPATRL (and pronounced “N Patrol”), was designed to address these short-
comings [21]. This formalism makes available the abstract expressiveness of
a logical language to specify requirements at a high enough level to capture
intuitive goals precisely, and yet it can be interpreted in the NPA search engine.

NPATRL requirements are logical expressions whose atomic formulas are
event statements, which mostly correspond to events in the NRL Protocol An-
alyzer; they include events denoting actions by honest principals that can be
found in the trace of an NPA search, and the special learn event that indicates
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the acquisition of information by the adversary. NPATRL’s syntax for events
is similar but not identical to the NPA’s. In NPATRL, the NPA accept event
given above is written:

initiator accept key(user(A, honest), user(B,H),K,N)

The logical infrastructure of NPATRL consists of the usual connectives ¬,
∧, →, etc, and the temporal modality 3 which is interpreted as “happened at
some time before” or “previously”.

For example, we may have the following requirement:

If an honest principal A1 accepts a key K for communicating with
another principal B, then a server must have previously generated
and sent this key with the intention that it should be used for com-
munications between A and B

We can use NRL Protocol Analyzer events to construct an NPATRL formula
that expresses it:

initiator accept key(user(A, honest), user(B,H),K,N)
→ 3 svr send key(server, (user(A, honest), user(B,H)),K,N)

This formula is a simple expression of the above requirement.
Intuitively, the protocol verification process changes from what we discussed

in the previous section by using NPATRL requirements where the final state
appeared. More precisely, we first need to map every NPATRL event statement
to an actual event or set of events in the NPA specification of the protocol.
However, this mapping does not need to be one-to-one; it is possible to have one
NPATRL event map to more than on NPA event, and more than one NPATRL
event map to the same NPA event. In particular, if the intruder learns more than
one term as a result of an NPA transition, this can be expressed by mapping two
NPATRL learn events to the NPA event describing that transition. Conversely,
if there are two ways in which a principal might accept a key as valid, and there
are described by two different NPA transitions, we might have a single NPATRL
event statement map to the two NPA events describing the two transitions.

Once we have performed the mapping, we use the negation of each NPATRL
requirement to provide a way to characterize the states that should be unreach-
able if and only if that requirement is satisfied. At this point, we perform the
analysis as in the previous section: if the NPA proves that this goal is unreach-
able, the protocol satisfies the original requirement. Otherwise, it returns a
trace corresponding to an attack on the protocol that potentially invalidates
the requirement.

A couple of particular points about NPATRL expressions: events occur ex-
actly once. This means that atomic formulas are true at exactly one point in a
trace (if at all). There is nothing in NPATRL syntax to automatically guarantee

1See Section 3.1 for the definition of an honest principal.
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this uniqueness; it is assumed that event statements contain enough individuat-
ing information in their arguments or predicate to enforce this. Note that NPA
guarantees this uniqueness, in part by having all events indexed both by local
runs and timestamps. Second, “3” is a strict operator; it includes times prior
to the present time but does not include the present time. It is also convenient,
especially when stating axioms, to have the dual operator in our language, “2”,
read as “at all previous times” or “always previously”. It can be defined logically
by, 2ϕ↔ ¬3¬ϕ, where ϕ is an formula.

NPATRL has been extensively used in the last few years to analyze protocols
with various characteristics. Among these, generic requirements have been given
for two-party key distribution protocols [19, 20] and two-party key agreement
protocols [21]. The most ambitious specification undertaken using NPATRL
has involved the requirements of the credit card payment transaction protocol
SET (Secure Electronic Transactions) [14]. SET proved particularly difficult to
specify for several reasons. One of these was that the objects to be authenticated
are dynamic: unlike keys, what is agreed upon changes as it passes from one
principal to another. This exercise revealed several ambiguities [14].

Our current task, formalizing group key management requirements, has its
own dynamics. Even when the data objects (keys) are constant, the principals
sharing them are not. And the very notion of a session is much less well defined
than in previously studied cases. Perhaps most significantly, until this point we
had been able to use NPATRL as just a language. All statements were inter-
preted into the NPA and evaluated there. However, we have found it necessary
to reason at the level of NPATRL itself. This requires a deductive system for
our logical language.

3.3 Interpreting NPATRL into LTL

A number of temporal logics [6, 8] have been investigated and successfully used
in recent years. In this section, we will relate NPATRL with the closest pro-
posals in this field. Specifically, we will focus our attention to Linear Temporal
Logic (LTL). We show that NPATRL can be seen as a sublanguage of LTL.
This observation opens the doors to importing theoretical results and practical
techniques developed for LTL, and in particular the efficient implementation
methods available for this language [7].2

LTL belongs to the class of logics that postulate that any moment has a
single successor (as opposed to branching temporal logics that admit several
possible futures for a given state). Therefore time is represented as a line,
and each instant is characterized by the formulas that are true in it. An LTL
specification omits the time-line in favor of the relations between formulas at
different instants. We have the following syntax:

ϕ ::= p | ¬ϕ | ϕ1 ∨ ϕ2 | © ϕ | 2ϕ | 3ϕ | ϕ1 U ϕ2.

LTL adds a number of temporal modalities to atomic formulas and the familiar
2We are grateful to Lenore Zuck for pointing out this connection to us.
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operators from classical logic. ©ϕ (“next ϕ”) holds if ϕ is true in the next
instant of time; 2ϕ (“always ϕ”) holds if ϕ is currently true and will remain
true at every instant in the future; 3ϕ (“sometimes ϕ”) holds if ϕ is true at
some time from now on; finally ϕ1 U ϕ2 (“ϕ1 until ϕ2”) holds if ϕ1 will continue
to be true until ϕ2 becomes true. We included U for completeness but we will
not make use of it in this section. Notice however 2 and 3 can be expressed in
terms of U . The interested reader is referred to [6, 8] for a further discussion of
LTL and other temporal logics.

This presentation, which we tried to keep intuitive, hints at a number of
differences between LTL and NPATRL. We will now examine them. The most
evident, but also least invasive, mismatch is that LTL is a logic of the future
while NPATRL’s temporal operators are used to talk about the past. Duality
principles effortlessly reconcile these views. Some proposals, e.g. [12], have
considered explicit past operators, but interpreting LTL “the other way around”
will be sufficient for us.

NPATRL’s events model transitions between the implicit states of this lan-
guage. The effect of an event is to alter the values of unmentioned state compo-
nents such as the messages known by a principal (or the intruder) or what proto-
col actions can be fired next. The atomic formulas of LTL (and of the modal logic
discussed in Section 3.4) represent instead state properties, i.e. the observable lo-
cal effect of implicit transitions. We bridge the gap between transition-oriented
NPATRL and state-oriented LTL by interpreting the events of the former as
meta-level state properties in the latter: event e will be mapped to the property
p(e) that we will read as “e is the next transition that will be applied in this
state” (alternatively, “e is the transition that lead to this state”). Observe that
both events and states are explicit in NPA.

The next discrepancy has to do with the interpretation of the temporal
modalities. In NPATRL, 2 and 3 are strict: their scope does not encompass
the current instant, which does contribute to the interpretation of 2 and 3 in
LTL. Therefore, 2ϕ is true in a model where ϕ holds at every moment but
the current one, while 2ϕ is false. Yet, the “next” operator allows for a simple
embedding p q of NPATRL into LTL:

peq = p(e) p2ϕq = ©2pϕq
p¬ϕq = ¬pϕq p3ϕq = ©3pϕq

pϕ1 ∨ ϕ2q = pϕ1q ∨ pϕ2q

The left column translated the traditional fragment directly. The more interest-
ing right column uses the© modality of LTL to shift the time-line by one point
to simulate the strict operators of NPATRL with the corresponding non-strict
modalities of LTL. This encoding shows that NPATRL can be thought of as a
sublanguage of LTL.

Notice that 2 and 3 can easily be expressed in NPATRL. If x y denotes
our inverse translation,

x2ϕy = xϕy ∧ 2xϕy and x3ϕy = xϕy ∨ 3xϕy.
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However, there is no way to render “next” in NPATRL (“until” does not seem
expressible either).

We conclude with a note about the form of atomic formulas. Clearly, NPA-
TRL relies on a first-order language. While the propositional instance of LTL is
most commonly used, various first-order extensions have been investigated [6].
This brings us to the decidability issue: since the non-temporal fragment of
NPATRL embeds the language of first-order Horn clauses, which is well-known
to be Turing complete, validity is undecidable in NPATRL.

3.4 NPATRL Axioms

We give axioms of a normal modal logic adequate to capture the needed temporal
reasoning. As we noted in our discussion of NPATRL and LTL, for our purposes
that means reasoning about discrete linear strict orderings of events. We present
a standard axiomatization as set out in [8] that is sound and complete with
respect to a semantics of time indexed and ordered by the natural numbers.
Following [8], the axioms are given their traditional names, some tracing back
to the early twentieth century. Readers are referred to standard texts for details
on systems of modal and temporal logic, e.g., [3, 8, 11].

Our logic has two inference rules:

Modus Ponens: From ϕ and ϕ→ ψ infer ψ.

Necessitation: From ` ϕ infer ` 2ϕ.

‘`’ is a meta-linguistic symbol. ‘Γ ` ϕ’ means that ϕ is derivable from the set of
formulae Γ (and the axioms as stated below). ‘` ϕ’ means that ϕ is a theorem,
i.e., derivable from axioms alone. Axioms are all instances of tautologies of
classical propositional logic, and all instances of the following axiom schemata

K 2(ϕ→ ψ)→ (2ϕ→ 2ψ)

4 2ϕ→ 22ϕ

D 2ϕ→ 3ϕ

L 2((ϕ ∧ 2ϕ)→ ψ) ∨ 2((ψ ∧ 2ψ)→ ϕ)

Z 2(2ϕ→ ϕ)→ (32ϕ→ 2ϕ)

The first axiom, K, guarantees that our temporal operators respect the non-
temporal part of the logic. The 4 axiom guarantees that temporal reasoning is
transitive. D guarantees that there are always more points in time; thus some-
thing does not end up being true for all previous points in time simply because
there are no previous points.3 The fourth axiom, L, guarantees that events are
weakly-connected (comparable), specifically that any two points connected to
any third are also connected to each other. The last, Z, guarantees that time is
discrete: between any two points there are at most finitely many other points.

3This is entirely compatible with the usual assumption that protocols start with a finite
number of principals and in an initial state, which can be reflected by the non-logical assump-
tion of a point prior to which the state is always the same, i.e., with the schema 3(ϕ → 2ϕ).
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There is some discussion of logics containing these axioms in [8] and [11]. In
[11], axiom L is called “Lem0” after Lemmon.

3.5 NPA’s Use of NPATRL and NPA Acceptable Expres-
sions

NPATRL requirements are used with NPA by having the user translate the
NPATRL requirements into states that the NPA will attempt to prove unreach-
able. This is currently done by hand, although we believe that it should be
possible to write software to achieve this. Since NPATRL requirements express
conditions on events and sequences of events, it is necessary to take the negation
of NPATRL requirements, and then to have NPA prove that no state for this
negated requirement can be reached from an initial state. However, although
NPATRL was originally designed to be used with the NRL Protocol Analyzer,
one of its main motivations was intuitiveness in specifying requirements while
NPA was originally designed simply for effective automated protocol analysis.
Thus it is not surprising that NPATRL is actually much more expressive than
the set of specifications whose negations are accepted by the tool. So, in order
to make NPATRL usable with NPA, it is necessary to identify a subset of NPA-
TRL requirements that are acceptable by NPA, and to put them into a normal
form that is parsable by NPA.

An NRL Protocol Analyzer query can be specified in terms of three things:
terms known by the intruder, values of local state variables, and sequences of
events that did or did not occur. The part of the query concerning sequences
of events corresponds most closely to the NPATRL events. However, these
events only correspond to user actions, and do not include learn events, which
correspond to intruder actions. In order to capture intruder learn events, we
will need to make use of the part of the query that specifies terms known by
the intruder. This can cause some difficulties, since an NPA query does not
specify when the terms were learned by the intruder. However, we can simplify
matters by limiting ourselves to queries which specify the learning of only one
term, so we only have to worry about the placement of learn events relative
to non-learn events, whose order it is possible to specify explicitly in NPA. We
also have several tricks available with which we can get around some of the
difficulties posed by this discrepancy between NPATRL and NPA. In the case
that a specification is of the form

learn(P, (), X,N)→ 3 E

where E is an event or sequence of events, the negation would be

learn(P, (), X,N) ∧ ¬ 3 E

The question that will actually be put to NPA is whether or not there is a state
in which the intruder knows X and E did not occur. NPA will search for X, at
each step checking whether or not the event E occurred. Unless it is possible
for E to be the same event as the one in which the intruder learns X, this will
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guarantee that NPA will only look for sequences in which E occurs before the
learning of X.

Conversely, we may want to ask whether or not it is possible for the intruder
to learn X without some other sequence of events F occurring previously. As
it turns out, we cannot ask this, but we can ask if it is possible for the intruder
to learn X and for some sequence of events F to happen. In many cases, this
is what we want any way. For example, if the intruder learns a key that is
shared between two honest principals, we do not care whether or not the key
was learned before or after it was accepted by the principals. This condition is
then

3 learn(P, (), X,N)→ ¬(3 F )

and its negation, whose unreachability we want to check, is

3 learn(P, (), X,N) ∧ 3 F

The question that we ask NPA is whether or not the intruder knows X and F
did occur. Then NPA will start up two lines of inquiry, one in which the last
event is the intruder learning X (and so F occurs previously or is the same
event as the intruder learning X), and one in which the last event is the last
event in F , so that the intruder learning X predates the last event in F , or is
the same event as F .

In most cases, we have found this kind of workaround to be adequate. How-
ever, in our analysis of GDOI we found a case where a precise specification of
the timing of learn events with respect to other events was critical. This was the
requirement that one condition under which the intruder could learn a group
key was that a dishonest member must have joined the group and not have left
yet. As it turned out, we did not attempt to verify this particular condition
for other reasons, but our inability to even pose this question to NPA has mo-
tivated us to implement the learn event as part of the NPA query language; we
are currently in the process of doing this.

Given that caveat, we specify a normal form R for expressions acceptable by
the current version of the NPA in a BNF grammar. Note that this normal form
simply functions as an interface between NPATRL requirements specifications
and NPA expressions in the context of the current expansions in the class of
protocols to which they are applied. It is not claimed to be, e.g., maximal
or especially intuitive per se, but merely one such possible interface. Its BNF
grammar is as follows. We let w stand for a learn event, a stand for any atomic
event that is not a learn event, and let b stand for any atomic event.

E ::= 3a 3(a ∧ E)
F ::= E E ∨ F E ∧ F
G ::= ¬E ¬E ∧ G
R ::= ¬b a→ G b→ F a→ G ∨ F a→ G ∧ F

3w → G 3w → G ∨ F 3w → G ∧ F

The special handling of ”b” events (which may be learn events) is an artifact
of the fact that learn events are not currently explicitly specified in the NPA
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query language. Instead, they are specified by means of terms that the intruder
knows, and thus must always be referred to as something that happened in the
past. Once learn events are implemented explicitly in the NPA query language,
it will be possible to handle them in the same way as other events, which will
allow us to simplify the normal form language.

4 Requirements for GDOI

In this section we give NPATRL specifications of the various relevant events in
the GDOI protocol as well as specifications of the various GDOI security re-
quirements. For the purpose of exposition, we begin with the requirements that
are closest to those for two-party protocols, the authentication requirements.
We then proceed to freshness requirements, which are somewhat more complex,
and finally to secrecy requirements, which are the most complex and differ the
most from requirements for two-party protocols.

4.1 Assumptions

We assume that each group is managed by one GCKS (it is possible to have
more, but the means for doing this are not specified in the GDOI document).
We assume that a GCKS may manage more than one group, and that a member
may belong to more than one group. We assume that members may both join
and leave a group, and a member may have concurrent and/or overlapping
memberships in the same group.

We assume the usual Dolev-Yao style intruder, who can read, alter, destroy,
and create traffic, and is in league with any dishonest principals, who share all
data with it. We assume that all GCKSs are honest, but that some members may
be dishonest. Note that as a result of this assumption we make no distinction
between the intruder’s learning a key and a principal learning a key to which it
is not entitled. Only dishonest principals will attempt to gain access to keys to
which they are not entitled, and dishonest principals are assumed to share all
information with the intruder.

We assume that there are two ways in which a key can be compromised that
cannot be prevented by the protocol. One is by stealing: the intruder may learn
the key by cryptanalysis, theft, etc. even if all possessors of the key are honest.
The other is by having a dishonest member join the group.

Finally, in order to simplify matters, we only define events and requirements
for key encryption keys, not traffic encryption keys.

4.2 GDOI Events

In general, events map to actual messages and vice versa. However, since the
second and third messages of the groupkey-pull exchange simply defer compu-
tation in order to resist forms of denial-of-service attacks [17] and the NPA does
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Figure 1: Event Annotations for GDOI

not currently support reasoning about denial-of-service, we behave as if their
information load were compounded with the outer messages of this exchange.

We divide the possible GDOI events according to the principals that en-
gage in them. There are four types of principals: the intruder, the GCKS,
the group member, and an authorization server responsible for issuing creden-
tials. Since a group member may be honest or dishonest, we represent a gen-
eral group member as member(M,H) with H a variable, an honest member
as member(M, honest), and a dishonest group member as member(M, dishonest)
where honest and dishonest are constants.

We summarize the events considered in the present formalization and give
their approximate location within the execution of GDOI in Figure 1. Events
enclosed in brackets may or may not happen, depending on which options are
enable (e.g., [gcks sendpop]) or the scenario we are considering (e.g., [learn]).
Other events will occur when the protocol reaches the point where they appear.

4.2.1 Intruder Events

There is only one intruder event of interest to us here: the event in which the
intruder P learns a word W . We represent that as follows:

learn(P, (),W,N)
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4.2.2 The GCKS

The GCKS performs a number of actions of interest. It can create a key encryp-
tion key. It can admit and expel members. It can also cause a key to become
current, and cause a key to expire. It can send a key, either in response to a
member’s request, or as part of a group-key push datagram. We represent these
as follows:

Creating a key:

gcks createkey(GCKS , (), (G,KG), N)

where G is the group for which GCKS is creating the key encryption key KG.

Sending a key as a result of a pull exchange:

gcks sendpullkey(GCKS ,M, (KG, NM , NGM , G,KGM ,PoP), N)

where M is the member, KG is the key, G is the group, KGM is the pairwise key,
NM is the nonce M uses in initiating the exchange, NGM is the nonce G uses in
responding, and PoP is a Boolean variable indicating whether or not a Proof-
of-Possession is required. We also use the gcks sendpullkey event to cover the
GCKS’s admitting M to the group, since M requests membership by initiating a
pull protocol. We use NGM to identify M ’s particular membership in the group.
Note that this may not be the identifier used in a real application (as a matter
of fact, GDOI does not specify any kind of membership identifier); however it
is useful from a requirements point of view in that it allows us to distinguish
between different and possibly overlapping memberships on the part of the same
individual. Finally, PoP denotes a variable which is used to determine whether
or not M was expecting a Proof-of-Possession (POP) from the GCKS.

Sending a key in a push message:

gcks sendpushkey(GCKS , (), (G,KG,K
′
G), N)

The event gcks sendpushkey causes one key, K ′
G, to expire for group G and

causes the next one KG to become current. The initial key created for a group
is first sent in a pull-key message. Except for such initial keys, we assume for
convenience that a push-key message making KG current is sent immediately
after the create event that produced KG (without the possibility of an inter-
vening distribution in a pull-key message). Indeed, we could easily have made
them map to the same transition, but this would have complicated things by
forcing us to express our requirements differently for the initial group key and
the subsequent group keys. We also assume that the initial key is sent in at
least one pull-key response that takes place immediately after its creation. We
say the initial key becomes current when that first pull-key response containing
it is sent.

We note that neither gcks sendpullkey nor gcks sendpushkey tell the whole
story about the keying material passed in these two messages. In actual fact,
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the pull-key message will contain, not only the current key, but also the relevant
part of the key hierarchy that the member M needs to access the key. Likewise
the gcks sendpushkey message will also contain the portion of the key hierarchy
that needs to be changed to give members access to the new key and prevent
former members from accessing the new key, if this is desired.

Canceling a membership:

gcks cancel(GCKS ,M, (G,NGM ), N)

where M is the member, G is the group, and NGM identifies the membership.
Note that expulsion cancels only the membership with identifier NGM , not all
memberships of that member. In order to truly expel the member, all its mem-
berships would have to be canceled.

We note that gcks cancel would be achieved in GDOI by having the GCKS
send out a push message containing a new key hierarchy from which M is
excluded. We choose to specify gcks cancel separately from gcks sendpushkey
since this allows us to avoid issues such as canceling multiple memberships in
one message, etc.

Sending a POP:

gcks sendpop(GCKS ,M, (G,NGM , NM , CG), N)

This event describes a GCKS sending a POP. CG stands for G’s credentials.

Stealing a Key:

Finally, we need to specify the stealing of a key. We think of this not as some-
thing done by the intruder, but as something done by the GCKS. In other words,
the action of stealing a key needs to be precipitated by the GCKS “losing” a
key. This appears paradoxical, but it is a result of our model’s assumption that
actions involving a piece of data can only be initiated by those in possession of
it.

Note that it would also seem to make sense to specify the member’s losing a
key. However, in the case in which the key is actually generated by the GCKS,
this is redundant, since compromise of that key is already described by a GCKS
lose event. The only sort of member lose event that is not covered by a GCKS
lose event is one in which the member accepts something that is not generated by
the GCKS and then loses it. This would be of interest, but if we discovered that
a member could accept a bogus key as genuine, it would make more sense to fix
the protocol than to attempt to discover whether an intruder could make use of
compromised bogus keys. So, for the sake of avoiding unnecessary complication
of the analysis we did not include it.

We have two event statements, one describing the loss of a key-encryption
key, and one describing the loss of a pairwise key:

gcks losegroupkey(GCKS , (), (G,KG), N)
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where G is the group and KG is the key.

gcks losepairwisekey(GCKS , (), (GCKS ,M,KGM ), N)

where KGM is the pairwise key and M is the member who shares the key with
the GCKS.

4.2.3 Member Actions

The relevant member actions involve accepting a key and requesting a key. A
member can only request a key by initiating a group-key pull exchange, but it
may accept a key as a result of receiving the final message of a group-key pull
exchange or as a result of receiving a group-key push message.

The events are specified as follows.

Requesting a Key:

member requestkey(M,GCKS , (G,NM ,KGM ), N)

where GCKS is the GCKS, G is the group, NM is the nonce M uses in initiating
the request (to distinguish it from other requests), and KGM is the pairwise key
shared between GCKS and M . This corresponds to M sending the first message
in a group-key pull exchange.

Accepting a Key From a Group-key Pull Exchange:

member acceptpullkey(M,GCKS , (G,KG, NGM , NM ,KGM ,PoP), N)

where GCKS is the GCKS, G is the group, KG is the key, and KGM is the
pairwise key shared between M and the GCKS. Again, this does not give the
whole picture, as it leaves out the portion of the key hierarchy that the GCKS
sends to M . The variable PoP is a Boolean indicating whether a Proof-of-
Possession is requested.

Accepting a Key From a Group-key Push Message:

member acceptpushkey(M,GCKS , (G,KG,K
′
G), N)

where GCKS is the GCKS, G is the group, KG is the new key, and K ′
G is the

current key encryption key. Again, we leave out the portion of the key hierarchy
that M uses to authenticate the message and decrypt KG.

For conciseness, we set

member acceptkey(M,GCKS , (G,KG), N)
↔ member acceptpullkey(M,GCKS , (G,KG, , , , ), N)
∨member acceptpushkey(M,GCKS , (G,KG, ), N)

Here and in the rest of this paper, we write “ ” for an argument whose actual
value is irrelevant. Each occurrence can be thought of as a distinct variable.
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Sending a POP:

member sendpop(M,GCKS , (G,NM , NGM , CM ), N)

This event describes a member M sending a POP. CM stands for M ’s creden-
tials.

4.3 Authentication Requirements

Since GDOI is only intended to address the problem of secure distribution of
group keys, not the authentication of group members to each other, its au-
thentication requirements are simple and rather similar to those for two-party
protocols, as described in [19, 21]. Thus we give them first. There are authen-
tication requirements for both the group member and the GCKS. The group
member will want to know, if it accepts a key, that that key was generated by
the GCKS for that group. The GCKS will want to know that, if it sends a key
to a group member, then that group member requested a key. Finally, there
are authentication requirements on the Proof-of-Possession (POP) algorithm.
Initially, we took this requirement to mean that if a principal A received a POP
from a principal B for use in a group G, then B should have generated that
POP using its signature key, and intended it for A and group G. As we will see,
this turned out to be too restrictive a requirement if we assume that pairwise
keys can be compromised; we will discuss what we actually wound up verifying
in Section 5.

4.3.1 Authentication of a Key to a Group Member

Since there are two different ways a group member can receive a key, we have
two different sets of requirements. In the case of the group member M accepting
a key KG for group G as a result of the pull protocol, we require that one of two
things must have happened; either the pairwise key shared between the member
and the GCKS was lost, or the GCKS did send KG to M for use in G:

member acceptpullkey(M,GCKS , (G,KG, NM , NGM ,KGM ,PoP), )
→ 3gcks losepairwisekey(GCKS , (), (M,KGM ), )
∨3gcks sendpullkey(GCKS ,M, (KG, , , G,KGM ,PoP), )

In the case of the member M accepting the key KG for group G as the result
of receiving a push datagram, we again require that the GCKS has sent KG for
use in G in a push datagram protected by key K ′

G:

member acceptpushkey(M,GCKS , (G,KG,K
′
G), )

→ 3gcks sendpushkey(GCKS , (), (G,KG,K
′
G), )

Observe that this requirement does not make any provision for losing an old
group key K ′

G since gcks sendpushkey messages are authenticated with the sig-
nature of the GCKS.
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4.3.2 Authentication of a Group Member’s Request

Although the GCKS has two ways of sending keys, it has only one way of sending
a key to a specific group member: via a pull protocol. Thus we need only one
requirement here, saying that if the GCKS sent a key to a group member in
response to a pull protocol request, then either the pairwise key between the
GCKS and group member was lost, or the group member actually sent that
request. We need a unique way of identifying the group member’s request, and
so we will use the nonce the group member sends in the first message of the pull
protocol:

gcks sendpullkey(GCKS ,M, (KG, NM , NGM , G,KGM ,PoP), )
→ 3gcks losepairwisekey(GCKS , (), (M,KGM ), )
∨3member requestkey(M,GCKS , (G,NM ,KGM ), )

4.3.3 Authentication of a Proof of Possession

For Proofs-of-Possession, we want to show that, for either the GCKS or a mem-
ber, if A accepts a key requiring a Proof-of-Possession from B, then B sent the
POP, and B obtained the credentials from the appropriate authority. The act
of obtaining credentials is outside the scope of GDOI; however, we leave it in
the requirement specification because it is clearly the intent of the POP.

gcks sendpullkey(GCKS ,M, (KG, NM , NGM , G,KGM , true), )
→3 ( member sendpop(M,GCKS , (G,NM , NGM ,M), )

member acceptpullkey(M,GCKS , (KG, NM , NGM , G,KGM , true), )
→3 ( gcks sendpop(GCKS ,M(G,NM , NGM ), )

4.4 Freshness Requirements

For GDOI, we can identify two types of freshness. One, we call recency freshness.
This is the requirement that, if a principal receives a piece of information, such
as a key, then it must have been current at some specified point in time according
to the principal’s local clock, for example when the principal requested it. The
other, we call sequential freshness. This is the requirement that, if a principal
accepts a key KG, then it could not have previously accepted a key that became
current after KG.

Again, Freshness requirements for GDOI do not differ greatly from those
that have been defined for two-party protocols. Indeed, recency and sequential
freshness correspond closely to the notions of ”freshness” and ”virginity”, re-
spectively, defined in [21]. The main difference is that, without some notion of
globally reliable timestamps, only sequential freshness is possible for the push
message, since it does not allow for a handshake.
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4.4.1 Recency Freshness for Pull Protocol

member acceptpullkey(M,GCKS , (G,NM , NGM ,K ′
G,KGM ,PoP), N)

→ 3gcks losepairwisekey(GCKS , (), (M,KGM ), )
∨¬(3 ( member requestkey(M,GCKS , (G,NM ,KGM ), N)

∧ 3gcks sendpushkey(GCKS , (), (G,KG,K
′
G), )))

Note that the definition of recency freshness is one of the few places we make
use of round numbers, since the member requests and accepts the key in the
same round. Note also that the GCKS’s act of sending a key KG protected by
K ′

G using the push protocol results in the expiration of K ′
G.

4.4.2 Sequential Freshness for Pull Protocol

member acceptpullkey(M,GCKS , (G,NM , NGM ,KG,KGM ,PoP), )
→ 3gcks losepairwisekey(GCKS , (), (M,KGM ), )
∨¬(3 ( member acceptkey(M,GCKS , (G,K ′

G), )
∧ 3 ( gcks createkey(GCKS , (), (G,K ′

G), )
∧ 3gcks createkey(GCKS , (), (G,KG), )))

Recall from Section 4.2.2 that a group key is sent (and therefore made current)
immediately after it is created by the GCKS.

4.4.3 Sequential Freshness for Push Protocol

member acceptpushkey(M,GCKS , (G,KG,K
′
G), )

→ ¬(3 ( member acceptkey(M,GCKS , (G,K ′′
G), )

∧ 3 ( gcks createkey(GCKS , (), (G,K ′′
G), )

∧ 3gcks createkey(GCKS , (), (G,KG), )))

4.4.4 Freshness of a Member’s Key Request

We now consider a freshness requirement from the GCKS’s point of view. When
the GCKS responds to a member’s request with a key, it must be sure that this
is a new request, not a replay of some old request. Since a member’s request
contains a nonce which is intended to be unique, we make this into a requirement
that a GCKS should not have previously distributed a key to that member using
that nonce.

Note that this freshness requirement can only be guaranteed for an honest
member, since there is nothing preventing a dishonest member from replaying an
old request and then participating in the protocol to obtain a key. Since honest
members are the only ones we are interested in protecting anyway, this is not a
problem for us. However, we need a way of distinguishing between honest and
dishonest members. We do this by borrowing a trick from the NRL Protocol
Analyzer specification language, and referring to principals as member(M,H)
where H is a variable that can be instantiated to honest or dishonest. At this
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point we are only interest in member(M, honest):

gcks sendpullkey(GCKS ,Mh, (KG, NM , NGM , G,KGM ,PoP), )
→ 3gcks losepairwisekey(GCKS , (), (Mh,KGM ), )
∨¬3gcks sendpullkey(GCKS ,Mh, (K ′

G, NM , N ′
GM , G,KGM ,PoP ′), )

where Mh = member(M, honest).

4.4.5 Freshness of Proof of Possession

Freshness requirements for Proof-of-Possession are more similar to two-party
freshness requirements than some of the others we have visited. Since POPs
are computed on nonces supplied by sender and receiver we require that, if a
principal accepts a POP for two nonces, then it should not have accepted it pre-
viously. Since the POP is computed on the sender’s and receiver’s nonces, this
can be enforced by requiring that the GCKS does not engage in a sendpullkey
event based on the same nonces twice, and that a member does not engage in
an member acceptpullkey event based on the same nonces twice. It is not neces-
sary for the GCKS (resp. member) to check prior use of nonces to satisfy this
requirement provided that it generates and sends a fresh nonce for eack sendpul-
lkey message it sends. Note that the GCKS’s freshness requirement is similar,
but somewhat stronger than, the requirement for freshness of a member’s key
request; it is not dependent on the pairwise key being uncompromised.

gcks sendpullkey(GCKS ,Mh, (KG, NM , NGM , G,KGM ,PoP), )
→¬3gcks sendpullkey(GCKS ,Mh, (K ′

G, NM , NGM , G′,K ′
GM ,PoP ′), )

member acceptpullkey(M,GCKS , (KG, NM , NGM , G,KGM ,PoP), )
→¬3member acceptpullkey(M,GCKS , (K ′

G, NM , NGM , G′,K ′
GM ,PoP), )

where again Mh = member(M, honest).

4.5 Secrecy Requirements

GDOI has one basic secrecy requirement, that keys should only be learned by
members of the group. However, we may want to put other conditions on this
requirement. For example, we may require that new members should not have
access to old keys (backward access control), and that expelled members will
not have access to any keys generated after they were expelled (forward access
control). GDOI also allows for an option that provides a degree of protection
against compromise of pairwise keys; it allows for the optional use of Diffie-
Hellman to assure perfect forward secrecy : if a pairwise key is stolen, then the
intruder should only be able to learn key encryption keys distributed after the
event.

As we can see, the different secrecy requirements are not quite orthogonal,
and they can interact with each other in different ways. For example, one
would not want to waste time with perfect forward secrecy if one did not also
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have backwards access control. In general, it is assumed that it is more likely
that a dishonest member will join the group than that a pairwise key shared
between only two principals will be stolen. So it makes little sense to use perfect
forward secrecy to protect old keys, if they could be compromised by having a
group key distributed to a dishonest principal. Likewise, requirements such as
forward and backward access control should not only govern the effects of the
distribution of keys, but other events such as the stealing of keys. For example,
if members should no longer have access to new keys after leaving the group,
then an intruder’s stealing a key should not give it access to subsequent keys
either.

Our solution to this problem is to define a number of conditions describing
sequences of events that define the situation under which an intruder might
learn a key. These conditions can then be mixed and matched to put together
the appropriate requirement. We can then use the NPATRL logic to reduce the
requirements to normal form, when necessary.

In the remainder of this section, we describe the various sequences. These
include five “base cases” that describe some simple sequences of events that
could lead to key compromise, as well as two recursively defined cases that
describe forward access control without backward access control, and vice versa.
We also give several examples showing how the various cases can be combined
to produce different types of requirements.

4.5.1 The Base Cases

The five base cases are as follows:

BClose(KG, G):
gcks losegroupkey(GCKS , (), (G,KG), )

This describes the a group key-encryption key being stolen.

BCdishonest mempush(KG, G):

3( gcks sendpushkey(GCKS , (), (G,KG,K
′
G), N)

∧ 3gcks sendpullkey(GCKS ,Md, (G, ,NGM ,K ′′
G,KGM ,PoP), ))

∧¬3( gcks sendpushkey(GCKS , (), (G,KG,K
′
G), N)

∧ 3gcks cancel(GCKS ,Md, (G,NGM ), ))

where Md = member(M, dishonest). This describes a group key being
distributed while a dishonest member is in the group. Note that it is in
two parts. The first says that the dishonest member has joined the group;
the second says that the member has not left it yet. In order to take
care of the possibility of multiple joinings and leavings, we give both join
and leave the same index NGM , which uniquely identifies M ’s joining the
group.

BCdishonest mempull(KG, G):

3gcks sendpullkey(GCKS ,Md, (G, ,NGM ,KG,KGM ,PoP), )
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for Md = member(M, dishonest). This describes a group key KG being dis-
tributed to a dishonest member via a pull protocol, that is, the dishonest
member is being admitted to the group.

BCpairwiselose(KG, G):

3gcks losepairwisekey(GCKS , (), (M,KGM ), )
∧3gcks sendpullkey(GCKS ,M, (G, , ,KG,KGM ,PoP), )

This describes the result of a pairwise key being lost and a key being sent
using that pairwise key.

BCprev pairwiselose(KG, G):

3 ( gcks sendpullkey(GCKS ,M, (G, , ,KG,KGM ,PoP), )
∧ 3gcks losepairwisekey(GCKS , (), (M,KGM ), ))

This describes a pairwise key being lost and a key being sent using that
pairwise key after the pairwise key is lost.

4.5.2 The Recursive Cases

There are two additional cases that we call recursive as they are defined on the
basis of the learn event. The first describes an intruder learning an old key after
a later key has become current. The second describes the intruder learning a
key before another key expires. We call these two cases “backward inference”
and “forward inference.”

BI(K ′
G, G):

3learn(P, (), (K ′
G, G), )

∧3( gcks createkey(GCKS , (), (G,KG), )
∧ 3gcks createkey(GCKS , (), (G,K ′

G), ))

Note that when a new key is sent, the old key expires. And, we assume
any (non-initial) key is sent in a push-key message as soon as it is created.
Thus BI for K ′

G describes an intruder learning a key KG that became
current after a key K ′

G was current.

FI(KG, G):

3learn(P, (), (K ′′
G, G), )

∧3( gcks sendpushkey(GCKS , (), (G,KG,K
′
G), )

∧ 3gcks sendpushkey(GCKS , (), (G,K ′′
G,K

′′′
G ), ))

FI describes an intruder learning a key K ′′
G that expired before a later key

KG was generated. We explicitly write KG and K ′′′
G for the additional

keys (instead of “ ”) for readability.
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Backward Inference will be used to specify forward access control without
backward access control: If an intruder learns a key KG, then BI(KG, G) will
be listed among the set of possible paths to that event, but not FI(KG, G),
that is, the intruder may have learned KG as a result of learning a key K ′

G

that expired previously to KG, but not a key K∗
G that was generated after KG

expired. Similarly, Forward Inference will be used to specify backward access
control without forward access control: if an intruder learns a key KG, then
FI(KG, G) will be listed among the set of of possible paths to that event, but
not BI(KG, G).

We note that there appear to be some major changes from the original,
informal, definition of forward and backward access control. The original defi-
nition put the requirement on the knowledge of any group member, not on the
intruder. Also, the original requirement discussed a member learning a key as a
result of joining the group, while we simply consider the results of the intruder
learning a key without specifying how it was learned.

Our rationale for changing the focus from member to intruder can be ex-
pressed in two steps. In the NRL Protocol Analyzer model, we assume that
dishonest group members can do everything honest group members do and
more, since honest members can only obey the rules of the protocol. Thus any
conditions on a dishonest member’s learning a key should also hold for an hon-
est member. Secondly, we assume that all dishonest members share information
with the intruder, so that any conditions on the intruder’s learning a key would
imply the same condition for a dishonest member learning that information.

4.5.3 Sample Requirements

In this section, we show how the various “cases” can be combined into require-
ments.

Weak Secrecy

The weakest form of secrecy requirement simply requires that the protocol
should protect against key compromise given the most benign assumptions pos-
sible: that is, that neither pairwise or key encryption keys have been lost, and
no dishonest members have ever joined the group. This can be described in
terms of three separate conditions:

learn(P, (), (KG, G), )
→ BClose(K ′

G, G) ∨ BCdishonest mempull(K ′
G, G) ∨ BCpairwiselose(K ′

G, G)

In other words, the intruder should not learn a key KG for G unless some group
key has previously been lost, a dishonest member joined the group at some
time, or a pairwise key that was used to distribute a group key was stolen,
either before or after being used.
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Strong Secrecy

We can also use the base cases to formulate the strongest type of secrecy possible.
In strong secrecy, the intruder learns a key KG only if KG is lost, a dishonest
member received KG, either when it joined the group or while it was a member
of the group, or if a pairwise key was stolen and used to distribute KG. We may
or may not wish to require perfect forward secrecy.

Here, for example, is strong secrecy with perfect forward secrecy:

learn(P, (), (KG, G), )
→ BClose(KG, G) ∨ BCdishonest mempush(KG, G) ∨ BCdishonest mempull(KG, G)
∨BCprev pairwiselose(KG, G)

Forward Access Control

Forward access control (without backward access control) can be thought of as
strong secrecy together with added condition of backward inference: An intruder
can learn a key, not only if the key was lost, distributed to a dishonest member,
or distributed using a lost pairwise key, but if the key became current before
the intruder learned a later key, e.g., because a dishonest member joined the
group. We do not include perfect forward secrecy, since protecting against old
keys being compromised as a result of a stolen pairwise key makes no sense if
the keys could be learned as a result of a dishonest member joining the group
at any point:

learn(P, (), (KG, G), )
→ BClose(KG, G) ∨ BCdishonest mempush(KG, G) ∨ BCdishonest mempull(KG, G)
∨BCpairwiselose(KG, G) ∨ BI(KG, G)

Backward Access Control

Backward access control (without forward access control) can be specified sim-
ilarly to forward access control, except that we replace backward with forward
inference. We can require perfect forward secrecy or not. Here, for example, is
backward access control without forward access control but with perfect forward
secrecy:

learn(P, (), (KG, G), )
→ BClose(KG, G) ∨ BCdishonest mempush(KG, G) ∨ BCdishonest mempull(KG, G)
∨BCprev pairwiselose(KG, G) ∨ FI(KG, G)

If we wanted to omit the perfect forward secrecy requirement we would substi-
tute BCpairwiselose(KG, G) for BCprev pairwiselose(KG, G).

In appendix A we show how to put the requirements for Forward and Back-
ward Access Control into normal form.
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5 GDOI Specification and Analysis

5.1 Specification

In our specification of GDOI, we used a feature of NPA that we had not used
before, the notion of master protocols and subprotocols. A subprotocol executes
using information generated by a master protocol. An example would be Phase
1 and Phase 2 in the Internet Key Exchange Protocol (IKE) [9]. Phase 1
generates keying material that is used to protect the message exchanges in the
Phase 2 protocol. Indeed, we had originally intended to use subprotocols in our
specifications separately.4

We used subprotocols as follows (see also the diagram below). From the
point of the view of the GCKS, the master protocol is the one in which it
sets up a group. There are two subprotocols: the handshake protocol in which
it distributes the current group key to a new member requesting to join the
group, and the formation and sending of the key update message. For the group
member, the master protocol is the one by which it joins the group, and the
subprotocol is the one in which it receives and verifies the key update message.

GCKS�� �create group

�� �pull key
�� �push key

@
@@R

�
��	

Member�� �pull key

�� �push key
?

We modeled GCKS’s who could set up an arbitrary number of groups, al-
though each group would be managed by at most one GCKS. For any of those
groups, it can receive and process a request from a member at any time. It can
also distribute keys to the group as a whole at any time. The only restriction is
that it will only process one handshake from a member at a time per group. This
is a restriction on subprotocols that was inherited from their original intent that
they be used for to describe distribution of pairwise keys between two principals
using a master key that had been distributed between the two principals using
the parent protocol. In such a case it is reasonable to expect that two session
keys would not be generated at the same time for the same two principals. As a
result of our experience with GDOI, we plan to make it possible to do without
this restriction in subsequent versions of NPA.

We also modeled group members who could request membership in a group
at any time, and who could belong to more than one group. A group member
could also receive and process a new group key at any time after joining the
group.

One thing we did not specify was a member leaving the group. This was
4We are currently using the subprotocol-style specification to analyze IKE version 2, how-

ever.
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because NPA does not currently have the ability to reason about the key hi-
erarchies that are used to revoke access to keys. As a result, in this analysis,
we only verified one of the secrecy requirements to NPA: weak secrecy. We are,
however, currently investigating ways of expressing key hierarchies as abstract
data types whose properties are described by rewrite rules, with the idea of
developing equational unification algorithms for them in a way similar to what
we do now in the NPA with encryption and digital signatures. This will allow
us to integrate key hierarchies into the NPA.

5.2 Analysis

Our formal analysis actually consisted of three parts: specification of the proto-
col, specification of its requirements, and verification that the protocol satisfied
its requirements. We were able to identify problems at all three stages of our
analysis, which we communicated to the authors of GDOI. All of these problems
were fixed in subsequent versions. Since our analysis proceeded from protocol
specification to requirements specification to formal verification, we will present
our results in that order.

5.2.1 Problems Found During Protocol Specification

Most of the problems we found during the protocol specification were minor in-
consistencies and ambiguities. For example, the Diffie-Hellman keying material
generated by the responder and sender was denoted by KE in each case, instead
of KE I and KE R, allowing for possible confusion. Also, it was unclear in the
SIG payload definition of the groupkey-push message what fields the signature
was taken over, and whether signing or encryption was done first. All of these
were quite easy to correct once they were pointed out to the authors. More
seriously, a flaw was discovered in the way sequence numbers were handled. It
required some more intensive thought and redesign before it could be fixed.

Specifically, the groupkey-push message contains a sequence number SEQ
that is intended to guarantee freshness. A group member would find out the
current value of the sequence number when it joined a group. From then on, the
sequence number would be incremented every time a new key-encryption-key SA
was created (in the pull-key exchange), and it would be included in that SA. The
problem was that not every group-key push message contained a key-encryption
key. Some might contain only traffic-encryption keys. When this was pointed
out, it was realized that the key-encryption SA was not the appropriate place to
put the sequence number, and the specification was changed so that sequence
number payloads have their own separate place in the groupkey-push message,
instead of appearing inside the key-encryption-key SA’s, and sequence numbers
are updated every time a new groupkey-push message is created.

While this was a minor change conceptually, from the point of view of im-
plementation it was a major overhaul. Catching this problem earlier allowed
the designers of the protocol to avoid the expense that would have come with
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a major redesign and reimplementation at a later stage, or from cumbersome
workarounds.

5.2.2 Problem Found During Requirements Specification

We found two problems during the requirements specification. Both of these
emerged when we started asking ourselves under what conditions a requirement
should hold.

The first problem concerned the Proof-of-Possession signature. In the orig-
inal protocol, a principal proved possession of its private key by signing the
nonce that it had created. This worked fine as long as the pairwise key that
protected the conversation between GCKS and member was not compromised.
However, if the key was compromised, it would be possible for an intruder to
insert a fake Proof-of-Possession signature into the conversation, for example by
replaying an old one.

After the problem was pointed out, there was some discussion as to whether
it was necessary to protect against such an eventuality, since if pairwise keys
were compromised, the group keys would be compromised as well, causing other
problems besides facilitating attacks on Proof-of-Possession. However, there are
advantages to making Proof-of-Possession secure against pairwise key compro-
mise, since it makes it possible to prevent intruders from impersonating honest
principals even when such compromise has taken place. At the end, it was de-
cided to modify the protocol so that each principal signed a hash of its own and
another’s nonce. As we will see in the next section, this led to some other, more
subtle problems.

The other problem emerged as we were considering the different types of
freshness. We found that the groupkey-pull protocol did not satisfy sequential
freshness if a member was allowed to send out a second request to join a group
before it had received an answer to the first request. In that case, if the responses
from the GCKS were received out of order, and the group-key was changed
between those two responses, the member might accept the newest key first, and
then replace it with the old key when it received the earlier response. Again,
there were several possible solutions to this, one of which was not to allow a
principal to repeat a request to join a group until the first one had timed out. At
the end, though, it was decided that it would allow more flexibility to require the
group member to compare the sequence number it received in a final message
from a GCKS with its current sequence number value, and only to accept the
new key if the incoming sequence number was greater than the current one.

5.2.3 Problems Found During Formal Analysis

Once we had the protocol and requirements specification written, we were ready
to use NPA to ask questions. We found fewer problems at this stage, but they
tended to be more subtle, and, in at least one case, we uncovered a problem that
we believe would have been extremely unlikely to have been discovered without
mechanical aid.

31



We begin with the more obvious problem first. This was a problem found in
one of our own requirements specifications, instead of in the protocol itself. In
our specification of Proof-of-Possession authentication as presented in Section 4
we found that we had given too restrictive a requirement. For example, for the
GCKS’s Proof-of-Possession, we had said:

member acceptpullkey(M,GCKS , (KG, NM , NGM , G, , true), )
→ 3gcks sendpop(GCKS ,M, (G,NM , NGM ), )

This meant that the Proof-of-Possession was assumed not only to authenticate
the GCKS’s key, but also to verify that member and GCKS were talking about
the same group. This was true only if each group was associated with a unique
signature key, since the proof-of-possession proves only possession of that key.
As a matter of fact, unless the GCKS expected and received a proof-of-possession
from the group member, it would not even necessarily know that it was talking to
that member. Our assumption that the Proof-of-Possession should authenticate
the group as well as possession of the key was our own mistake, however, since
the GDOI specification only says that the Proof-of-Possession verifies possession
of the key. Thus, we changed the requirement to something more realistic: the
only data agreed upon was the key and the nonces it was used to sign.

Thus, our requirement would now look like this:

member acceptpullkey(M,GCKS , (KG, NM , NGM , G, , true), )
→ 3gcks sendpop(GCKS ,M ′, (G′, NM , NGM ), )

The other set of problems we found were more subtle, and did require a
rewriting of the protocol. The decision to require principals to sign nonces gen-
erated by others in the Proof-of-Possession opens up a vulnerability to oracle
attacks. This vulnerability is usually countered by including information gen-
erated by the signer, as the GDOI authors did by including the signer’s nonce.
However in this particular case this precaution did not always prevent such
attacks.

We found two oracle attacks. In both, we assume that the same private key
is used by the GCKS to sign Proofs-of-Possession and groupkey-push messages.
In the first of these, we assume a dishonest group member who wants to pass
off a signed Proof-of-Possession from the GCKS as a groupkey-push message.
To do this, she creates a fake plaintext groupkey-push message GPM , which is
missing only the last (random) part of the Key Download Payload. She then
initiates an instance of the groupkey-pull protocol with the GCKS, but in place
of her nonce, she sends GPM . The GCKS responds by appending its nonce NB

and signing it, to create a signed (GPM , NB). If NB is of the right size, this will
look like a signed groupkey-push message. The group member can then encrypt
it with the key encryption key (which she will know, being a group member)
and send it out to the entire group. This attack is summarized in Figure 2.

The second attack, detailed in Figure 3, is similar to the first, although it
requires a few more assumptions to make it work. It relies upon the fact that
GDOI is built on top of the ISAKMP protocol [13], which requires that any
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Figure 2: First Oracle Attack on GDOI

message begin with a random number, usually contributed by both sender and
receiver of the message. Since the groupkey-push message has one sender and
many receivers, the random number beginning it is generated by the sender only,
that is, by the GCKS. We assume that there is a group member A who can also
act as a GCKS, and that the pairwise key between A and another GCKS, B, is
stolen, but that B’s private key is still secure. Suppose that A, acting as a group
member, initiates a groupkey-pull protocol with B. Since their pairwise key is
stolen, it is possible for an intruder P to insert a fake nonce for B’s nonce NB .
The nonce he inserts is a fake groupkey-push message GPM ′ that it is complete
except for a prefix of the header consisting of all or part of the random number
beginning the header. A then signs (NA,GPM ′), which, if NA is of the right
length, will look like the signed part of a groupkey-push message. The intruder
can then find out the key encryption key from the completed groupkey-pull
protocol and use it to encrypt the resulting (NA,GPM ′) to create a convincing
fake groupkey-push message.

The NPA found the second attack. Indeed, the attack is subtle enough that
we do not know when it would have been found if some sort of automated
assistance had not been used. However, the NPA could not have found the first
attack, since to do so would have required an ability on the part of the NPA to
model associativity of concatenation, which would have caused problems with
the termination of the narrowing algorithm. However, once the NPA had found
the second attack, we were able to mimic the reasoning used by it to find the
first one.

Both attacks also required further analysis before it could be determined
whether or not they were realistic. The NPA does not model any constraints on
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Figure 3: Second Oracle Attack on GDOI

the lengths of fields, and thus it is not possible to tell from its output whether or
not the attacks it finds put impossible conditions on field lengths. For example,
the first attack requires that the GCKS accept a nonce from a group member
that is nearly as long as a groupkey-push message. Is this possible or not?
For GDOI, this turned out to be possible, since GDOI puts no restrictions on
lengths of nonces used in the groupkey-push protocol.

Again, there were several possible responses to this problem. One would
be to require that different signature keys be used for Proof-of-Possession and
groupkey-push messages. This would be difficult to enforce, and would put an
extra burden on users of the protocol. Another would be to put constraints
on lengths of the nonces and other fields used that would make such attacks
impossible. This would also be difficult to enforce, however, and might conflict
with future security requirements on lengths of nonces and keys. The third,
and the one that was finally chosen, was to require that, instead of taking the
signatures over a hash a message (such as the two nonces, or the groupkey-push
message), to require that the signature be taken over a hash of the concatenation
of a field indicating the type of the message (member Proof-of-Possession, GCKS
Proof-of-Possession, or groupkey-push) with the message itself. This was a more
substantial change than the other two possibilities, but had the advantage of
being more robust and less restrictive.

Our discovery of these flaws also led us to consider developing techniques
for detecting problems of these types. Attacks that rely upon confusing data of
one type with data of another, known as “type confusion” attacks, can usually
be defeated by introducing a tagging scheme in which each data item has a field
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attached to it indicating its type, as was done in this case for GDOI (see [10]
for a further discussion of this and how it can simplify an automated protocol
analysis), but problems can arise when a protocol is interacting with another
protocol that does not use a tagging scheme, or tags data in a different way. Such
an interaction contributed to the second type confusion attack on GDOI, since
it was built on top of ISAKMP, which did not tag the random number at the
beginning of the header. Thus, we have recently been investigating techniques
for verifying that protocols are free of type confusion attacks. Our preliminary
results may be found in [18].

6 Conclusions

We have described an formal analysis of the Group Domain Of Interpretation
protocol. In the course of this analysis, we not only added value to GDOI,
and demonstrated how a formal analysis could be beneficial when performed in
close cooperation with the protocol designers, but we were able to develop a set
of formal requirements that could be possibly applied to other group protocols
involving a central key distributor, and led us to a better understanding of the
nature of requirements for open-ended cryptographic protocols in general. This
has motivated us to develop the NPATRL requirements language into a full-
scale logic that can be used to reason about and simplify requirements as well
as specify them.

We also discovered a number of issues that still remain to be resolved. Some
of them were relatively minor, such as changes that need to be made to NPA to
better accommodate reasoning about subprotocols. Others are more challeng-
ing, such as the research that is needed to help us reason about open-ended data
structures such as key hierarchies. But probably the most important problem is
how to better integrate the formal analysis with the protocol design. Probably
the promising avenue for this is through the requirements specification process.
We found specifying requirements very helpful in aiding our understanding of
the protocols. Moreover, when we presented problems we found to the GDOI
designers, the discussion of what approach to take often hinged on a decision
on the protocol requirements. For example, with respect to the problems we
found with the first version of Proof-of-Possession, the issue was whether or
not Proof-of-Possession should be secure against pairwise key compromise. It
would be helpful to have a common language to reason about requirements that
was both precise and convenient to use. However, although the NPATRL lan-
guage allowed us to state requirements precisely and reason about them in a
rigorous way, it is, like most temporal languages, difficult to write and read.
Recently, we have been investigating graphical representations of NPATRL re-
quirements. The NRL normal form of the requirements can for the most part
be naturally represented in terms of fault trees. We found fault tree represen-
tations much easier to read than the original NPATRL requirements, and we
often used them to help us understand the requirements better. We are cur-
rently further investigating fault tree representations of NPATRL requirements
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and their applicability.
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A Removing Recursion

In this appendix we show how we use the NPATRL logic to remove recursion
from the requirements for forward and backwards access control. Removing
recursion is not only desirable from the point of view of the NRL Protocol
Analyzer, but also because a recursively defined condition may cause an infinite
regression in other model checkers and theorem provers.
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We present only the proof for backward access control; that for forward ac-
cess control is similar. In the rest of this section, we will rely on the abbreviation

BC(K,G) = BClose(K,G) ∨ BCdishonest mempush(K,G)
∨BCdishonest mempull(K,G) ∨ BCpairwiselose(K,G).

where K is a key and G is a group.

Lemma 1
For any group G and group key KG, the backward access control condition
BAC(KG, G) =

learn(P, (), (KG, G), ) → BC(KG, G) ∨ FI(KG, G)

is equivalent to the conditions NRFAC(KG, G) =

learn(P, (), (KG, G), ) → BC(KG, G) ∨ NRFI(KG, G)

where NRFI(KG, G) =

3BC(K ′′
G, G)

∧3( gcks sendpushkey(GCKS , (), (G,KG,K
′
G), )

∧3gcks sendpushkey(GCKS , (), (G,K ′′
G,K

′′′
G ), )).

Proof:
In order to prove the implication in the forward direction, let us assume that

the premise, learn(P, (), (K,G), )→ BC(K,G) ∨ FI(K,G), holds for every key
K and group G. We proceed by induction on the age of K.

In the base case, suppose that K is the first key used by the GCKS for
G (i.e. the first key that was made current). Then, since there is no K ′′ that
was distributed before K, neither “FI(K,G)” nor “NRFI(K,G)” holds, and so
“BC(K,G) ∨ FI(K,G)” is trivially equivalent to “BC(K,G) ∨ NRFI(K,G)”.

Suppose now that the result holds up to the n’th key Kn used by the GCKS.
Now, by unfolding the hypothesis relative to Kn+1, we have

learn(P, (),Kn+1, G), )
→ 3BC(Kn+1, G)

∨ ( learn(P, (), (Kk, G), )
∧ gcks sendpushkey(GCKS , (), (G,Kn+1,K

′), )
∧ 3gcks sendpushkey(GCKS , (), (G,Kk,K

′′′), )),

for some k < n+1. By induction hypothesis, we know that learn(P, (), (Kk, G), )
→ BC(Kk, G) ∨ NRFI(Kk, G), which we can use in the above formula obtaining

learn(P, (),Kn+1, G), )
→ 3BC(Kn+1, G)

∨ ( (BC(Kk, G) ∨ NRFI(Kk, G))
∧ gcks sendpushkey(GCKS , (), (G,Kn+1,K

′), )
∧ 3gcks sendpushkey(GCKS , (), (G,Kk,K

′′′), )),
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Now, by expanding NRFI(Kk, G), we get:

learn(P, (), (Kn+1, G), )
→ BC(Kn, G)

∨3( 3( BC(Ki, G)
∧ gcks sendpushkey(GCKS , (), (G,Kk,K

∗), )
∧ 3gcks sendpushkey(GCKS , (), (G,Ki,K

∗∗∗), )))
∧ ( gcks sendpushkey(GCKS , (), (G,Kn+1,K

′), )
∧ gcks sendpushkey(GCKS , (), (G,Kk,K

′′′), )))).

for keys Ki, K∗ and K∗∗∗. Using the tautologies “3(A ∧ B) → 3A ∧ 3B”,
that “33A → 3A”, and that “(A ∧ 3B) ∧ (C ∧ D) → C ∧ 3B”, that
follow immediately from the NPATRL axioms, this reduces to

learn(P, (),Kn+1, G), )
→ BC(Kn+1, G)

∨3( BC(Ki, G)
∧ gcks sendpushkey(GCKS , (), (G,Kn+1,K

′′′), )
∧ 3gcks sendpushkey(GCKS , (), (G,Ki,K

∗∗∗), )),

i.e., learn(P, (), (Kn+1, G), )→ BC(Kn+1, G) ∨ FI(Kn+1, G), which is the result
we need.

In the reverse direction, it is sufficient to show that “NRFI(K,G)” implies
“FI(K,G)”, or, after expanding these formulas and simplifying common terms,
that “(BClose(K ′′, G) ∨ BCdishonest mempush(K ′′, G) ∨ BCdishonest mempull(K ′′, G) ∨
BCpairwiselose(K ′′, G)” implies “learn(P, (), (K ′′, G), )”. This last statement holds
by virtue of the semantics of the events: all the above cases describe transitions
in which the key is released to the intruder, so of course the occurrence of any
of them would imply the learn event. 2

Lemma 2
For any group G and key KG, the forward access control condition FAC(KG, G) =

learn(P, (), (KG, G), ) → BC(KG, G) ∨ BI(KG, G)

is equivalent to the conditions NRBAC(KG, G) =

learn(P, (), (KG, G), ) → BC(KG, G) ∨ NRBI(KG, G)

where NRBI(K ′
G, G) =

3BC(K ′′
G, G)

∧3( gcks createkey(GCKS , (), (G,KG), )
∧3gcks createkey(GCKS , (), (G,K ′

G), ).

Proof:
The proof goes as for backward access control, except the base induction case

is the most recent key instead of the first key, and the induction is on distance
from the most recent key instead of on distance from the earliest key. 2
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